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Abstract. Many of the current automatic differentiation (AD) tools have similar charac-
teristics. Unfortunately, it is often the case that the similarities between these various AD
tools can not be easily ascertained by reading the corresponding documentation. To clarify
this situation, a taxonomy of AD tools is presented. The taxonomy places AD tools into
the Flemental, Fxtensional, Integral, Operational, and Symbolic classes. This taxonomy is
used to classify twenty-nine AD tools. Each tool is examined individually with respect to
the mode of differentiation used and the degree of derivatives computed. A list detailing
the availability of the surveyed AD tools is provided in Appendix A.

1 Introduction. Over the past 30 years, the development of automatic differentia-
tion (AD) tools has been driven by the need for the efficient evaluation of exact derivative
values and fueled by our ever increasing ability to create such tools. One of the principal
motivations for the creation of AD tools has been the need for the exact derivative values
of functions used in scientific computations. As scientists have used more sophisticated
models in which first- and higher-order derivatives are used, this need has intensified. In
atmospheric and oceanographic research, the need for exact derivative values is particularly
great.

As the need for AD tools has intensified, advances in the science of programming lan-
guages and modern computer algebra systems have made the creation of such tools less
formidable. Numerous researchers have taken advantage of these advances by creating
powerful AD tools. For example, lexical-analyzer generator tools such as Lex and compiler-
compiler tools such as Yacc have made the task of creating new languages or extending old
languages much less tedious. Several AD tools have been created with the help of language
development tools like Lex and Yacc. The most notable of these AD tools are the FOR-
TRAN precompilers JAKE [Spee80a] and PADRE2 [Kubo90a], and the modeling language
AMPL [Four90a].

During the SIAM Workshop on Automatic Differentiation, it became clear that the
forces driving AD technology had caused a variety of different tools to be created. Of these
various tools, many of them had similar characteristics. Unfortunately, the similarities
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2 Part VIII. Experience with Automatic Differentiation Software

between many of these AD tools were not easily ascertained by reading the corresponding
documentation. Clearly, a coherent framework for discussing AD tools was necessary.

In an attempt to create a coherent framework for discussing AD tools, this paper
presents a taxonomy of AD tools. The taxonomy presented here is designed to accentuate
the convergence of ideas on how to provide automatic differentiation and to emphasize the
evolutionary process molding these ideas. Each automatic differentiation tool examined in
this paper is classified as either an Flemental, Frtensional, Operational, Integral, or Symbolic
AD tool. This classification is based on the level of integration of automatic differentiation
provided by the source language.

In §4, the taxonomy is applied to survey twenty-nine AD tools. The framework of the
taxonomy is used to discuss the important features of each tool. We primarily examine each
tool with respect to the technique (mode) used to evaluate derivatives and with respect to
the maximum degree of derivatives that can be computed. Other features are examined
when appropriate. These additional features include the storage strategy for the reverse
mode and restrictions on the source language. A summary of this examination is provided
in Table 1.

Several of the tools have yet to be named by their respective authors. In the remainder
of this paper, unnamed tools are referred to by the first author’s initials followed by a
number. A large percentage of the tools presented are either commercially available, or
available free of charge or at a nominal cost. The remaining tools are unavailable. A list
detailing the availability of these tools is provided in Appendix A.

2 Preliminaries. Automatic differentiation is the process of producing the values
of a function’s derivatives from some representation of the function. The key difference
between classical automatic differentiation and symbolic differentiation is that the later
generates the symbolic representation of a function’s derivatives while the former does
not. Automatic differentiation is primarily concerned with the differentiation of algorithms
expressed in some general purpose programming language.

We are primarily concerned with scalar functions of the form f: R™ — R and vector
functions of the form f : R™ — R". Let X =< 21,...,2,, > be a vector of length m,
Y =< y1,....,y, > be a vector of length n, and y € R. Then the gradient of a scalar function
y = f(X)is G € R™ where each G; = df/dx;. The Hessian of the scalar function y = f(X)
is H € (R™)™ where each H;; = 0f/0x;0z;. The Jacobian of a vector function Y = f(X)is
J € (R™)" where each J;; = 0y;/0x;. Note that when we refer to derivatives, we implicitly
refer to related values such as Taylor series or sensitivities.

There are essentially two different techniques used to automatically differentiate func-
tions, the forward mode and the reverse mode. These different techniques can be best de-
scribed by considering the directed acyclic graph (DAG) of the computation < yq,...,y, >=
F(< x1,...,2, >) for some vector function F. In the reverse mode, derivative values prop-
agate from the dependent variables yq, ..., y,, to the independent variables zq, ..., 2,,. In the
forward mode, derivative values propagate from the independent variables to the dependent
variables. For more in-depth descriptions of these automatic differentiation techniques, see
[Rall81a, Irim87a, Grie89a, etc.].

As noted by Griewank [Grie89a], neither the forward mode nor the reverse mode is
optimal in all cases. The forward mode can be used to produce the partial derivatives of all
dependent variables with respect to a single independent variable in time proportional to the
evaluation of F. Similarly, the reverse mode can be used to produce the partial derivatives
of a single dependent variable with respect to all independent variables in time proportional
to the evaluation of F'. These two previous observations can be used to estimate which mode
is more efficient (in terms of numeric operations) when computing Jacobians. Consider the
function < y1,...,y, >= F(< @1,...,2, >). For values of n > m, the forward mode is
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probably more efficient than the reverse mode. Similarly, for values of m > n, the reverse
mode is probably more efficient than the forward mode.

Current implementations of the forward and reverse mode differ most in terms of spatial
complexity. A typical implementation of the forward mode requires less than m (the number
of independent variables) times the storage requirement of the original function. Most
implementations of the reverse mode require additional space proportional to the number
of numeric operations executed by the original function.

3 A Taxonomy. As mentioned earlier, AD tools provide support for producing the
values of a function’s derivatives from some representation of the function. Each AD tool
assumes that this function is represented in some source language, which may be a symbolic
language or a programming language. AD tools aid in the transformation from the source
language to a form which may easily be used to generate derivative values. This trans-
formation may be either explicit or implicit. For example, the FORTRAN precompiler in
the GRESS [Horw88a] package does an explicit transformation from its source language (a
minor extension of FORTRAN) to standard FORTRAN. The taxonomy presented in this
paper classifies automatic differentiators based on how, where, and when this transformation
is performed.

The most basic class is composed of the elemental AD tools. These tools operate on
the premise that every useful function can be decomposed into a sequence of elementary
operations. The derivative value of an elementary operation is only dependent upon the
values of the operation’s arguments and their derivatives. Therefore, computing derivatives
for the elementary operations can be performed locally and at a fixed cost. Elemental tools
are often implemented as a set of procedures, one for each operation. Each procedure takes
as input the values of an operation’s arguments and its derivatives, and returns the result
and its derivatives. The transformation from the source language is performed manually by
decomposing a function into a sequence of procedure calls for the elementary operations.
Lawson’s WCOMP and UCOMP packages [Laws71a] are examples of elemental AD tools.

Based on the concepts pioneered by the elemental tools, the class of extensional tools
provide extensions to standard programming languages for automatic differentiation. They
usually automate the process of decomposing complicated right-hand-sides of equations into
sequences of elementary operations. Typically, automatic differentiators in this class use
precompilers to perform the transformation from the extensions to the original language. For
example, the FORTRAN precompilers JAKEF [Hill85a], GRESS [Horw88a] and PADRE2
[Kubo90a] transform their variants of FORTRAN into standard FORTRAN 77. For this
reason, we classify them as extensional AD tools.

The integral tools push the ideas embodied by the extensional tools one step further.
Integral tools have the ability to automatically differentiate functions integrated within
their environment or language. Therefore, no explicit transformation of the source code
is necessary. The transformation is performed implicitly by the respective compiler or
interpreter. Integral tools typically differ from extensional tools in the sense that they
are clearly different languages, and not just minor extensions. They are characterized by
source languages that directly provide automatic differentiation. Several of the earliest
AD tools belong to the integral class. The best examples of these are SLANG [Adam69a,
McCu69a, Tham69a] and PROSE [Tham75a, PROS77a, Tham82a, Krin84a, Pfei87a]. More
recent examples of integral AD tools are the modeling language AMPL [Four90a], and the
FM/FAD [Mazo91a] package.

The operational tools have their origins in the ideas embodied by both the elemental and
extensional tools. Operational tools provide automatic differentiation within the constructs
provided by a programming language that provides polymorphic functions and operations.
Automatic differentiation is provided by defining a new data type for which differentiation
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Figure 1: The relationship among the various classes of AD tools.

can be performed easily. For these tools, the transformation necessary to produce derivatives
is implicitly handled by the programming language when it interprets the new data type.
The standard arithmetic operators are usually overloaded to handle operations performed
on this new data type. In this case, statements like # = y+* 24 sin(z) can be written without
being decomposed into elementary operations.

The modern programming languages ADA, C4++, and PASCAL-SC all provide the
operator overloading necessary to create operational AD tools. Some languages, such as
C++, also provide constructors and destructors for variables as they enter and leave their
scope of existence. These facilities allow AD tools to transparently allocate and deallocate
memory when necessary, as well as perform other maintenance procedures. The operational

tools ADOL-C [Grie92a] and MXYZPTLK [Mich90a] make use of these facilities in C++.

The final class of AD tools is the class of symbolic tools. Tools in this class either process
a symbolic representation of a function at run-time, or use a computer algebra system
to produce a differentiated function that is then translated into a standard programming
language. These tools are the most difficult to classify and form a diverse class. Most
tools in this class have been directly influenced by either computer algebra systems or the
elemental AD tools.

The five classes embody the ideas behind a paradigmatic evolution of AD tools. The
notion that complicated functions can be decomposed into sequences of elementary opera-
tions is the basis of all AD tools. This idea is embodied by the Elemental class. Competing
ideas on how functions are most naturally represented delineate the remaining classes. The
Symbolic class embodies the idea that functions should be represented algebraically instead
of algorithmically. The Extensional, Integral, and Operational classes take the opposite
stance. These remaining classes are distinguished by their respective ideas concerning the
means used to provide automatic differentiation. The Operational class embodies the idea
that automatic differentiation can be provided by a differential data type in a language
with operator overloading. The Extensional class realizes the notion of extending a lan-
guage to include automatic differentiation. Finally, the Integral class embodies the idea
that automatic differentiation can be provided directly within a programming language.
This evolutionary relationship is illustrated in Figure 1.

The five classes provide a sufficient framework for examining a wide variety of AD
tools. We subdivide each of the five classes further by the mode used to perform automatic
differentiation. All current automatic differentiators use either the forward or reverse mode,
and some use both modes. The following section examines twenty-nine AD tools with
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respect to their class, mode of differentiation, and degree of derivatives computed.

4 The Survey. The goal of this section is to give a coherent analysis of the current
state of AD technology. This goal is accomplished by

(i) using the taxonomy presented in §3 to classify twenty-nine current AD tools, and
by

(ii) giving a brief description of each classified tool.
The descriptions stress each tool’s mode of differentiation and ability to produce higher
derivatives. The descriptions of the tools that fall in the Elemental, Extensional, Oper-
ational, Integral, and Symbolic classes are found in §§4.1-4.5, respectively. Additionally,
Figures 2 and 3 are provided to emphasize important subdivisions within the Extensional
and Operational classes. Table 1 is provided to summarize this section.

The survey presented in this section was generated in the following manner. First,
a detailed questionnaire was generated and distributed by the author. The responses to
the questionnaire and the available literature were then carefully examined. From this
examination, the taxonomy was developed. Following this, each tool was classified, and
short, uniform descriptions of each tool were made. The authors of the respective tools were
then given the oppurtunity to review the classification and descriptions of their respective
tools.

Some of the tools in the survey could have been cross-classified. For example, the
GRAD function within MATLAB is classified here as a symbolic AD tool, but it has some
of the characteristics common to the integral AD tools. Similarly, FORTRAN CALCULUS
is classified here as an extensional AD tool, yet it has some of the properties of the integral
AD tools. Tools that could be cross-classified were placed in the class whose characteristics
best described them.

4.1 The Elemental Tools. Of the tools surveyed, three of them are elemental tools.
All three of these tools produce derivatives in the forward mode.

(1) The WCOMP and UCOMP [Laws71la, Math89a] packages consist of FORTRAN
77 subroutines for executing operations that propagate derivatives in the forward
mode. The WCOMP package contains subroutines that perform operations using
real-valued arrays of length N 4 1. Each array contains the value of a function f(¢)
and and its first IV derivatives with respect to an independent variable ¢. In a similar
fashion, the UCOMP package contains subroutines that compute a function’s value
and its first- and second-order partial derivatives with respect to N independent
variables. Fach package contains subroutines for a number of elementary binary

and unary operations.

A user of either the WCOMP or UCOMP package must directly write code that
calls the appropriate subroutines. For example, the statement ¢« = =z + y + z is
written as follows using the WCOMP package.

call SWSUM(N,Y,Z,Q) // Q=Y+Z
call SWSUM(N,Q,X,A) // A=X+Q

Both packages support single and double precision arithmetic.

(2) The MJ1 [Jerr89a] package contains the definition of an object for automatic dif-
ferentiation and its associated operations. The MJ1 package uses Turbo Pascal v5.5
to define an Ad object. Each Ad object contains a scalar value, gradient vector, and
Hessian matrix. The standard unary and binary elementary functions are defined
as procedures that operate on Ad objects. These procedures propagate derivative
values from one object to another in the forward mode.
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Complex operations are performed on Ad objects by the execution of an appropriate
sequence of elementary procedures. For example, the statement f = = + cos(z* y),
broken down into the elementary operations t1 = z*y, {1 = cos(tl), and f = 411,
is written as follows using M.J1.

t1.AdMultiply(z,y) ;
t1.4dCos(t1) ;
f.4dAdd(x,t1) ;

(3) The implementation of the FEED (the fast efficient evaluation of derivatives)
algorithm by Tesfatsion et al. [Tesf9la] consists of a suite of FORTRAN subrou-
tines that evaluate a function value and its first-, second- and third-order partial
derivatives with respect to NV independent variables. In the FEED implementation,
derivatives are propagated in the forward mode as operations are performed. This
implementation is similar to the UCOMP package [Laws71la, Math89a].

4.2 The Extensional Tools. The class of extensional tools contains the largest
number (nine) of the surveyed tools. This class consists primarily of precompilers. Of
the tools in this class, four produce derivatives strictly in the forward mode, one produces
derivatives only in the reverse mode, and four use both modes. Figure 2 illustrates this
fact.

Reverse Mode Forward Mode

DAPRE |DAPRE

ATOMFT

GRESS | GRESS

PADRE2 | PADRE2

GRAD

PCOMP | PCOMP
FORTRAN CALCULUS

Figure 2: Extensional tools subdivided by differentiation approach.

(4) The general purpose ordinary differential equation (ODE) solver ATOMFT [Chan82a]
is an AD tool in the sense that it provides the automatic generation of code to
evaluate Taylor series; however, automatic differentiation is not its primary focus.
ATOMFT is a FORTRAN preprocessor that generates FORTRAN source code to
solve systems of ODEs. ATOMFT takes as input a system of ODEs written using
a FORTRAN-like syntax. The code generated by ATOMEFT uses a Taylor series
algorithm to solve the system of ODEs. User-defined functions are supported.
ATOMEFT reads the system of differential equations and writes FORTRAN source
code that uses the recurrence relations derived from each equation to generate the
appropriate Taylor series values. The code generated by ATOMFT propagates the
Taylor series values strictly in the forward mode. The length of the generated
Taylor series is arbitrary and is controlled by user-specified parameters.

(5) The FORTRAN precompiler DAFOR [Berz87a, Berz89a, Berz90a] transforms ex-
isting FORTRAN code into FORTRAN code that also evaluates derivatives. Partial
derivatives can be calculated to an arbitrary-order and with respect to an arbitrary
number of independent variables. The transformation creates calls to a library of
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(6)

subroutines for the elementary operations. These subroutines propagate derivative
values in the forward mode.

DAPRE [Step9la] is a FORTRAN preprocessor. It takes as input a FORTRAN
subroutine and produces a new FORTRAN subroutine in which all of the arithmetic
operations are converted to calls to subroutines from a supporting run-time library.
The new FORTRAN subroutine can be used in conjunction with other supporting
library functions to generate the partial derivatives of the dependent variables of
the subroutine with respect to the independent variables of the subroutine. The
preprocessor determines which parameters are independent and which parameters
are dependent by their respective position in the parameter list of the subroutine.
Either the forward mode or the reverse mode can be used to propagate derivative
values using DAPRE. (This is done by linking the program with the appropriate
run-time library.) Derivatives can be calculated to arbitrary order. The preproces-
sor puts some restrictions on the subset of FORTRAN used to define the subroutine
(see [Step9la]). For example, EQUIVALENCE statements are not allowed. This
package was designed to interface smoothly with the NAG library of mathematical
software, but it is not NAG specific.

GRAD [Garc91a] is a FORTRAN preprocessor. GRAD takes as input a FOR-
TRAN subroutine that computes a function and produces a FORTRAN subroutine
that computes the function and its first-order partial derivatives with respect to
specified independent variables. Subroutines produced by GRAD can be recycled
through GRAD to produce routines for calculating higher-order derivatives. The
code that GRAD generates directly computes the partial derivatives and produces
Jacobian matrices.

Unlike many other precompilers, GRAD uses no subroutines that represent elemen-
tary operations. The partial derivatives are calculated directly and are placed in
specially named variables. The code generated by GRAD propagates derivatives in
the forward mode.

The GRESS (GRadient Enhanced Software System) [Horw88a] package is a system
for adding the ability to calculate normalized sensitivities and first-order partial
derivatives to existing FORTRAN programs. The GRESS package consists of a
FORTRAN precompiler and a library of supporting routines.

The GRESS precompiler produces code that propagates derivatives using either
the forward or reverse mode. When the GRESS “Chain” option is selected and
a set of independent variables is declared, the GRESS precompiler produces code
for calculating the derivatives of specified dependent variables with respect to the
declared independent variables. The GRESS “Chain” option produces code that
propagates derivatives using the forward mode. When the GRESS “Adgen” option
is selected, the GRESS precompiler produces code that calculates the derivatives
of the specified dependent variables with respect to every variable initialized by
FORTRAN READ statements. The GRESS “Adgen” option produces code that prop-
agates derivatives using the reverse mode.

GRESS has been used successfully on a variety of problems. Examples of the
application of GRESS can be found in [Horw89a, Horw90a, etc.].

FORTRAN CALCULUS [Tham89a, Tham91a] (denoted here by FC) is a com-
mercially available package for mathematical modeling. FC is an extension of FOR-
TRAN 77 that provides macro statements for differentiation, optimization and in-
tegration, dynamic arrays, and vector and matrix operations. The FC package
consists of a FORTRAN precompiler and a run-time library of supporting routines.
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FC’s extension to FORTRAN is based on a paradigm referred to as synthetic cal-
culus in [Tham82a, Krin84a, Tham89a, Tham9la]. The basic unit within this
paradigm is a model. Models are subprograms that contain sets of formulas. Differ-
entiation, optimization and integration are performed on specified models. Models
may include macro statements for optimization and integration. This allows for
the nesting of models.

Differentiation is performed transparently within the optimization and integration
processes. The optimization and integration routines use automatically generated
partial derivative values from specified models. These partial derivatives are cal-
culated during the execution of the specified model. In order to calculate these
derivatives automatically, the FC precompiler converts statements within a model
to sequences of subroutine calls. The subroutines propagate the values of variables
and their partial derivatives using the forward mode. These subroutines can calcu-
late first- and second-order partial derivatives with respect to an arbitrary number
of independent variables.

JAKEF [Hill85a] is another FORTRAN precompiler. JAKEF is a version of JAKE
[Spee80a] that was developed at Argonne National Laboratory and written using
FORTRAN 77. JAKEF takes as input a FORTRAN subroutine defining a scalar or
vector function, and generates a FORTRAN subroutine for computing the gradient
or Jacobian of the function, respectively. The code generated by JAKEF traces the
execution of the function and then uses that trace to propagate derivatives in the
reverse mode. The trace is stored in a linearized form in auxiliary integer and real
arrays. There is no facility in JAKEF for using auxiliary storage on large traces,
although Speelpenning mentions in his unpublished thesis [Spee80a] how such a
technique could be implemented.

PADRE2 [[rim87a, Kubo90a] is also a FORTRAN precompiler. PADRE2 is an ex-
tended version of PADRE, which was developed by N. Iwata [Iwat84a]. PADRE2
processes a FORTRAN function or subroutine that evaluates a scalar or vector
function and then produces a modified subroutine. This subroutine calculates the
original function, its partial derivatives, and an estimate of the rounding error
generated. The subroutine executes a sequence of elementary operations for each
statement in the original function and builds a computational graph of the execu-
tion. The computational graph is later traversed by the subroutine to propagate
derivatives and calculate rounding errors. A command line option of PADRE2
determines which mode is used to propagate derivatives.

PADRE2 can be used to calculate first- and second-order partial derivatives. For
example, if ¢g is a scalar function with independent variables X =< zq, 29, ..., 2, >,
and Y =< y1,¥2,..., Y, > is a vector, then the subroutine generated by PADRE2
can calculate g(X), the gradient 57¢g(X ), the Hessian-vector product /?¢g(X) Y,
and an estimate of the rounding error Ag(X).

The computational graph produced by a PADRE2 generated subroutine is stored
exclusively in main memory.

The PCOMP [Liep90a] package consists of three independent parts. The first
part (a) processes the description of function written in a subset of an extension to
FORTRAN, and compiles it into an intermediate code. The second part (b) uses
the intermediate code generated by (a) to evaluate the function and its gradient
at a single point. Part (b) interpretes the intermediate code and propagates first-
order derivatives in the forward mode. The third part (c) uses the intermediate
code from (a) to generate FORTRAN subroutines for evaluating the function and
its gradient. The subroutines generated by (c) propagate derivatives in the reverse



Taxonomy of Automatic Diflferentiation Tools 9

mode.

4.3 The Operational Tools. Of the tools surveyed, eight are operational tools. Of
these tools, six produce derivatives strictly in the forward mode, one produces derivatives
strictly in the reverse mode, and one uses both modes. The languages ADA, C+4, and
PASCAL-SC were used to implement these packages. Two of the packages were imple-
mented using ADA, four using C++4, and two using PASCAL-SC. This fact is illustrated
in Figure 3.

(13)

ADOL-C BC1 GOl
MJ2 ADA
RL1
MXYZPTLK GC2  RN1
C++ PASCAL-SC

Figure 3: Operational tools subdivided by implementation language.

The ADOL-C [Grie92a, Jued90a] package consists of a definition of a class of ac-
tive variables called adouble, and a library of supporting routines. ADOL-C was
written using C+4, and can be used to differentiate algorithms written in C or
C++. With the help of the £2c converter, ADOL-C can also handle FORTRAN
codes. To differentiate a vector function < y1,¥z2, ..., ¥n >= F(< 21,22, ccc, T >),
a user of ADOL-C (i) declares appropriate variables as adoubles, (ii) declares the
variables < #1,..., 4, > to be dependent, and declares < zy,...,z,, > to be inde-
pendent, (iii) traces the computation of F', and (iv) calls routines to generate the
partial derivatives. The trace of a computation is used by routines that propagate
derivatives in either the forward or reverse mode. First- and higher-order partial
derivatives can be calculated by successively propagating derivatives in the forward
and reverse mode.

In ADOL-C, arbitrarily nested or recursive functions can be differentiated. Also,
the trace of a function is stored sequentially in main memory and is automatically
paged to disk when necessary.

The BC1 [Chri90a] package uses operator overloading in ADA to provide a new
data type that aids in the calculation of derivatives. When functions using this
new type are executed, the computational graph of that execution is created. This
computational graph, which is stored in a linearized form, is used by other routines
to propagate derivatives in the reverse mode. The BC1 package can be used to
generate first- and second-order partial derivatives (i.e., gradients and Hessians).
GC1 [Corl91a, Corl91b] is an ADA package for operations on interval valued Taylor
series. To generate Taylor series, a user of GC1 writes a program that declares the
appropriate variables to be of the Taylor_type and uses the overloaded operations
provided by GC1. During the execution of such a program, the Taylor series are
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calculated in the forward mode automatically. The generated Taylor series could
be arbitrarily long. GC1 was designed to be used in an interval ODE solver. It
takes special care of applications (like ODEs) in which the Taylor series terms must
be completed one term at a time. User-defined functions and procedures involving
variables of Taylor_type are supported.

(16) The GC2 [Corl84a] package is written in PASCAL-SC and is used to compute
point and interval valued Taylor series operators. GC2 declares the Taylor series
data types Real Taylor_Type and Interval_Taylor_Type, and overloads all of the
PASCAL-SC elementary functions for them. The user of GC2 writes a program
using either Real_Taylor_Type or Interval Taylor_Type variables. During the exe-
cution of the program, the Taylor series of the desired lengths are calculated in the
forward mode. User-defined functions and procedures are supported.

(17) The MJ2 [Jerr89b, Jerr90a] package is very similar to the MJ1 package described
in §4.1. MJ2 is written using Turbo C4++ v1.0. MJ2 uses operator overloading,
and therefore the example code segment f = z + cos(z xy) from §4.1 does not need
to be modified.

(18) The MXYZPTLK [Mich90a] package is an operational AD tool written in C++.
The MXYZPTLK package defines two classes, DA and DAVector, and provides
a library of supporting routines. A number of binary and unary operations are
overloaded for these classes (e.g. +, *, sin, cos, etc.). When variables from
the two classes are used, derivative values are propagated in the forward mode.
MXYZPTLK can be used to calculate arbitrary-order partial derivatives with re-
spect to arbitrarily many independent variables.

(19) RL1 [Lind91a] is another operational AD tool written in C4++. The RL1 package
is used to generate derivatives for scalar or vector functions of a single real variable
(time). The RL1 package defines a class of tuples which contain the value of a func-
tion and its derivatives with respect to a single independent variable. Operations
applied to tuples produce tuples of the same form. The standard operations are
overloaded for this class. When operations are executed on members of this class,
the derivative values are propagated along with the function values in the forward
mode. Derivatives up to the third order can be calculated.

(20) The RN1 [Neid91a] package is an operational AD tool written in PASCAL-SC.
RNT1 defines a new data type for which the standard operations are overloaded.
When operations using this new type are executed, derivatives are propagated
in the forward mode. Partial derivatives to arbitrary order and with respect to
arbitrarily many independent variables can be calculated. Currently, the author of
RNT1 considers it to be purely a research project.

4.4 The Integral Tools. Of the tools surveyed, four are integral tools. Of these,
one uses the forward mode of automatic differentiation, one uses the reverse mode, and two
use both modes.

(21) The ADDS (Automatic Derivative Derivation System) [Yosh89a] package is an
AD tool that defines a new language. The ADDS package provides a language
for describing scalar, vector, and matrix expressions, and their partial derivatives.
Expressions defined in the ADDS language are translated into FORTRAN. During
the translation process, a computational graph of the expression (and alternatively
a graph for its partial derivatives) is generated. This computational graph is used
to generate the FORTRAN code. The translation process can produce code that
calculates partial derivatives in either the forward or reverse mode. The partial
derivatives can be calculated to arbitrary order and with respect to arbitrarily
many independent variables. ADDS also provides facilities for estimating rounding
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(22)

(24)

4.5

errors.
The modeling language AMPL [Four90a, Gayd91b] is a declarative language that
was designed for expressing mathematical programming problems. Mathematical
programming problems are described in AMPL by a sequence of nonlinear expres-
sions. The AMPL translator emits a representation of the DAG for each nonlinear
expression given. The DAG can then be used by various solvers to evaluate the
expression and its gradient at the points leading to a solution. Depending on the
solver, the evaluation of gradients is performed using either the forward mode, the
reverse mode, or a combination of both modes. The DAG of an expression can also
be used to produce FORTRAN or C routines for calculating the expression and its
gradient at a point.

The FM/FAD [Mazo91a] package is a PC-based set of tools for problem man-
agement. Problems (i.e., functions) are defined in FM/FAD using DIFALG, an
ALGOL-60 like programming language. Function definitions are compiled by the
DIFALG compiler and the compiled version is used by the DIFALG interpreter.
The problem solving aspect of the FM/FAD package uses the DIFALG interpreter
directly to calculate function values and their gradients evaluated at a point. The
DIFALG interpreter calculates the gradient of the function via the reverse mode.
The FM/FAD package only generates first-order partial derivatives.

FOXY [Berz90b, Berz90c, Berz90d] is an object-oriented programming language
that is similar to PASCAL. FOXY has built in facilities for automatically differ-
entiating functions written in that language. Arbitrary-order partial derivatives
with respect to arbitrarily many variables can be calculated. These derivatives are
calculated in the forward mode.

The Symbolic Tools. The class of symbolic AD tools contains five members.

Of the members of this class, four use the forward mode of automatic differentiation, while
only one uses the reverse mode.

(25)

(26)

(27)

The AD [Flan91b] program is a PC-based menu driven program for producing
numeric function and derivative values. The AD program allows a function to be
entered symbolically. Once entered, the symbolic representation of the function is
parsed and a tree representing the function is built internally. The function and its
derivatives (up to the 20th order) can then be evaluated at a point. The evaluation
process propagates derivatives in the forward mode. Currently the AD package is
only a demonstrational tool.

The GRAD [Hill91a] function within the MATLAB library of mathematical soft-
ware can calculate gradients interactively. The parameters to the GRAD function
are a character string containing the symbolic description of a function of n vari-
ables and a point in n-space (i.e., an array containing n real values). GRAD returns
an array of n+ 1 values containing the function value and its gradient evaluated at
that point. The character string is parsed internally by the GRAD function, which
then uses the forward mode to evaluate the gradient. The GRAD function can be
called by C programs.

The newest version (5.1) of MAPLE [Mona9la] can perform automatic differen-
tiation. In Maple, functions are expressed as Maple procedures. The Maple D
routine produces Maple procedures that evaluate single derivative values for func-
tions described by other Maple procedures. The Maple optimize routine can then
be used to optimize these procedures. Procedures for derivative values of arbitrary
order and with respect to arbitrary independent variables can be generated. These
procedures calculate derivatives in the forward mode. Maple procedures can be
converted into FORTRAN or C subroutines.
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(28) The NR1 package [Rost91a] is a symbolic AD tool. NR1 is implemented in LISP
within the Reduce Computer Algebra system. NR1 processes a Reduce procedure
that satisfies certain restrictions and produces an array of Reduce expressions.
These Reduce expressions calculate the gradient of the function in the reverse mode.
This array of Reduce expressions can be converted to FORTRAN by the Reduce
system. Currently the NR1 package is purely a research AD tool.

(29) The suite of FORTRAN programs SVALAQ (Self-Validating Adaptive
Quadrature) [Corl87a] contain elements that allow it to be classified as a sym-
bolic AD tool. This suite of programs produces guaranteed bounds on the values
of certain definite integrals by using automatic differentiation. SVALAQ takes as
input a single FORTRAN expression (no longer than 80 characters) for the inte-
grand. The expression is parsed and a code list is generated. From the code list,
quadrature rules for some special weight functions are activated. The code list is
interpreted and interval-valued Taylor series are calculated in the forward mode.
The calculated Taylor series are of arbitrary length.

SVALAQ is proprietary to IBM, and has not been released publicly.

5 Conclusion. In an effort to clarify the current state of AD technology, we pre-
sented a taxonomy of automatic differentiation tools in §3, and applied that taxonomy to a
survey of twenty-nine AD tools in §4. We hope that this paper will be a valuable resource
for those interested in applying automatic differentiation to their particular application.

Interested readers are directed to Appendix A for further information regarding the AD

tools presented in §4. The appendix contains a list detailing the availability of numerous
AD tools.
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Appendix A. A number of the automatic differentiation tools mentioned here are
either commercially available, available as beta test versions to educational institutions, or
available upon request. The following list details the availability of the various packages.
ADDS The ADDS package can be obtained by contacting Dr. Toshinobu Yoshida (yoshida
@cs.gunma-u.ac.jp), Dept. of Computer Science, Gunma University, Kiryu, Gunma
376, Japan. This package should run on any system with Common LISP.

ADOL-C The source code and documentation for ADOL-C can be obtained via elec-
tronic mail by contacting Andreas Griewank (griewank@antares.mes.anl.gov), ¢/o
Argonne National Labs, Div. of Math & Computer Science, 9700 S. Cass Avenue,
Argonne, IL 60439. (312) 972-6722.

AMPL Currently, most universities can obtain a beta-test version of the AMPL transla-
tor. Licensing for non-academic purposes is being planned. The AMPL translator
should run on any system with a C compiler. For further details, contact David M.
Gay (dmg@research.att.com), AT&T Bell Laboratories, Room 2C-463, 600 Moun-
tain Avenue, Murray Hill, NJ 07974-2070, U.S.A., (908) 582-5623.



Taxonomy of Automatic Differentiation Tools

| Package | Mode | Source | Avail 1 | Deriv+?
FElemental
WCOMP F FORTRAN v v
FEED F FORTRAN v
MJ1 F PASCAL v v
Integral
FOXY F FOXY v v
FM/FAD R DIFALG v
AMPL B AMPL v
ADDS B ADDS v v
FExtensional
ATOMFT F FORTRAN exp. v v
DAFOR F FORTRAN v v
FC F FORTRAN v v
GRAD F FORTRAN sub. Ve Ve
JAKEF R FORTRAN sub. Ve
DAPRE B FORTRAN sub. v v
GRESS B FORTRAN Ve
PADRE2 B FORTRAN sub, v v
PCOMP B FORTRAN sub. Ve Ve
Operational
GC1 F ADA v v
GC2 F PASCAL-SC v v
MJ2 F C++ v v
MXYZPTLK F C++ v v
RL1 F C4++ v v
RN1 F PASCAL-SC v
BC1 R ADA v v
ADOL-C B C++ v v
Symbolic
AD F Symbolic v
MATLAB F Symbolic v v
SVALAQ F FORTRAN exp. Ve
MAPLE F Maple procedure v v
NR1 R Reduce procedure v

13

Table 1: AD tools divided by class.

!The details regarding the availability of the checked packages are in Appendix A.
2Check marks indicate that those packages can generate higher than first-order derivatives.
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ATOMEFT This can be obtained from George Corliss (georgec@boris.mscu.mu.edu) Dept.
of Math., Marquette University, Milwaukee, WI 53233. Any system with a Fortran
77 compiler should be sufficient. The preferred form of distribution is e-mail or a
5 1/2” floppy, but other forms can be negotiated.

BC1 The BC1 package is available solely for educational and research purposes (no com-
mercial or military use). The source for BC1 is written in ADA, and can be obtained
by contacting Bruce Christianson (comqgbc@hatfield.ac.uk), Numerical Optimisa-
tion Centre, Hatfield Polytechnic, Hatfield Hertfordshire AL10 9AB, England.

DAFOR The tool is available from Martin Berz for non-commercial scientific use. It
runs on any standard FORTRAN 77 system and has been used on VAX, SUN,
CRAY, CYBER, IBM PC, and MACINTOSH machines. Code can be obtained via
BITNET or on tape or floppy by contacting BERZ@QMSUNSCL.BITNET.

DAPRE Both Sun/Unix and VAX/VMS versions of DAPRE exist. For more information,
contact NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, U.K.
(telephone (+44)-865-511245 or fax (+44)-865-310139) or NAG Inc., 1400 Opus
Place, Suite 200, Downers Grove, IL 60515-5702, USA (telephone (+1)-708-971-
2337 or fax (+1)-708-971-2706).

FC FORTRAN CALCULUS is a commercially available product of the Digital Calculus
Corporation. For more information, contact Davis Allen, VP Marketing, Digital
Calculus Corp., 2615 Pacific Coast Hwy. Suite 215, Hermosa Beach, CA 90254,
(213)-318-8822, (213)-318-2142 (FAX).

FM/FAD Those interested in obtaining the FM/FAD system should contact Dr. Vladimir
P. Mazourik, Department of Application Software for Personal Computers, Com-
puting Center, USSR Academy of Sciences, Vavilova str. 40, Moscow 117967,
USSR, 135-6161.

FOXY The tool is available from Martin Berz for non-commercial scientific use after sign-
ing a short user registration including a non-proliferation agreement. It runs on any
standard FORTRAN 77 system and has been used on VAX, SUN, CRAY, CYBER,
IBM PC, and MACINTOSH machines. Code can be obtained via BITNET or on
tape or floppy by contacting BERZG@MSUNSCL.BITNET.

GC1 The GCI1 package of interval Taylor operators is available from George Corliss (georgec
@boris.mscs.mu.edu), Dept. of Math., Marquette University, Milwaukee, WI, 53233.
The source code can be obtained directly via e-mail. It is also available on 3 1/2”
or 5 1/2” floppies, or other media by request.

GC2 The GC2 package of real and interval Taylor operators can be obtained by e-mail or
on floppy disks by contacting George Corliss (georgec@boris.mscs.mu.edu), Dept.
of Math., Marquette University, Milwaukee, WI, 53233, or Louis Rall (rall@ math
.wisc.edu), Dept. of Math., University of Wisconsin - Madison, Madison, WI 53706.

GRAD The GRAD precompiler is free and can be obtained by contacting Oscar Garcia
(garciao@mof.govt.nz or garciao%mof.govt.nz@Quunet.uu.net), Forest Research In-
stitute, Private Bag 3020, Rotorua, New Zealand. GRAD was written in APL. Two
versions of GRAD are available, one for STSC APL*PLUS (which also runs with
Pocket APL), and the other for the public domain I-APL interpreter .

GRESS GRISS can be obtained by contacting the Radiation Shielding and Information
Center (RSIC), Oak Ridge National Laboratory, MS-6362, P.O. Box 2008, Oak
Ridge TN 37831-6362, (615)-574-6176. RSIC charges a nominal recovery cost for
GRESS. For more detailed information about GRESS, contact James Horwedel
(jah@ctd.ornl.gov), Computing and Telecommunications Division, Oak National
Laboratory, Oak Ridge, TN 37831.
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JAKEF This package currently resides on NETLIB.? Both the documentation and the
sources for JAKEF can be obtained from NETLIB. JAKEF was written using
FORTRAN-77 and has been ported to a variety of different machines.

MATLAB The source or executable code for the GRAD function in MATLAB is available
from David R. Hill, Mathematics Department, Temple University, Philadelphia, Pa.
19122, or Lawrence C. Rich, The Mathematical Software Group, 54 Sequoia Drive,
Newtown, Pa. 18940.

MJ1 & MJ2 The source code for both of these tools is available at no charge, and can
be obtained by contacting Max E. Jerrell, College of Business Admin., Northern
Arizona University, C.U. Box 15066, Flagstaff, AZ 86011. MJ1 was written using
Turbo Pascal v5.5 and MJ2 was written using Turbo C4++ v1.0.

MXYZPTLK The source code and documentation for MXYZPTLK can be obtained by
contacting Dr. Leo Michelotti (michelotti@adcalc.fnal.gov), c¢/o Fermi Lab., P.O.
Box 500, Mail Station 345, Batavia, IL 60510. (708)-840-4956.

RL1 The source code for RL1 is available, subject to the approval of management at
the Aerospace Corporation. Those interested should contact either Dan Kalman
(kalman@aerospace.aero.org) or Robert Lindell (lindell@aerospace.aero.org), M1/102,
The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009-2957

PADRE?2 The source code and documentation for PADRIE2 can be obtained by contacting
Dr. Koichi Kubota (kubota@ae.keio.ac.jp), Dept of Adm. Engineering, Faculty of
Science and Technology, Keio University, 3-14-1, Hiyoshi Kohuku-ku, Yokohama
223, Japan. PADRE?2 is available under UNIX as uuencoded compressed tar-file
via electronic mail, or on a 720Kbyte Floppy Disk under DOS.

PCOMP PCOMP was implemented and tested on VAX/VMS, HP-UNIX and MS-DOS
systems, in the latter case by using two different compilers. Thus PCOMP should
run on the majority of existing computer systems. The source code is distributed
by Prof. K. Schittkowski (Klaus.Schittkowski@uni-bayreuth.de), Mathematisches
Institut, Universitdt Bayreuth, 8580 Bayreuth, Germany, and can be obtained on
a MS-DOS diskette or a tape.

WCOMP The WCOMP and UCOMP packages can be used on any system with FOR-
TRAN 77. They are available as part of the MATH77 library. The MATH77 library
and its manual are available at a nominal price from COSMIC (Computer Software
Management and Information Center), The University of Georgia, 382 East Broad
Street, Athens, GA 30602. Persons with a research interest in the packages should
contact Charles Lawson directly (Charles. LAWSON@jems.jpl.nasa.gov).
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